B. Tech. Civil Engineering

2022-23 B.Tech

Course Structur	e for	Semester	VII	(Fourth	Year)	w.e.f.	2020-2021
-----------------	-------	----------	-----	---------	-------	--------	-----------

Course Code	Type of Course	Course Title	. 1	Week Feach Scher	dy ing ne	1	Evaluation Scheme			Credits
2010-2010 - Angel			L	Т	Р	CA	MSE	ESE	Total	
BTCVC701	Core	Design of Concrete Structures - II	2	1		20	20	60	100	3
BTCVC702	Core	Infrastructure Engineering	3			20	20	60	100	3
BTCVC703	Core	Water Resources Engineering	3	1		20	20	60	100	4
BTCVC704	Core	Professional Practices	2	1		20	20	60	100	3
BTCVE705A		Construction Techniques	1				1		100	5
BTCVE705B		Engineering Economics								10 10
BTCVE705C	Elective IV	Finite Element Method	1							
BTCVE705D		Limit State Design of Steel Structures	3		-	20	20	60	100	3
BTCVE705E		Plastic Analysis and Design			2	19 2 ⁹ 9 2		472		
BTCVE705F		Water Power Engineering				(See	5	198 2	а ^{са} ж	
BTCVOE706A		Advanced Structural Mechanics	6. 10.			100			e	·
BTCVOE706B		Air Pollution Control	in e	e	a - 1					20
BTCVOE706C		Bridge Engineering	1.0		1.8					
BTCVOE706D	Open Elective V	Introduction to Earthquake Engineering	3						-	Audit (AU/
BTCVOE706E		Town and Urban Planning	ra ta	2			н I г.			NP)
BTCVOE706F		Tunneling and Underground Excavations	•	11 J		2				
BTCVL707	Laboratory	Design & Drawing of RC & Steel Structures	-		2	30		20	50	1
BTCVL708	Laboratory	Professional Practices			2	30		20	50	1
STCVT709	Training	Field Training /Internship/Industrial						50	50	1
STCVS710	BTS	Seminar		·	2			50	50	
BTCVP711	BTP	Project Stage-I**			6		50	50	100	2
		NE GROUAL	16	3	12	160	150	400	800	5

**In case of students opting for Internehip and Industry Project in the eighth semester, the Project must be industry-

FORMAT					
Doc. No.: AMGOI-ACAD-FRM-10	Rev. No.: 00				
Page: 1 of 4	Rev. Dt.: 05/01/2014				
Department of Civil Engineering					

みい

Subject Choice Form

Department : Civil Engineering	Academic Year : 2022-23	
Class :B.Tech	Semester : Odd	

All students of Civil Engineering department are informed to select your elective subject form list of following subjects.

Elective IV

A) Construction Techniques

B) Engineering Economics

C) Finite Element Method

D) Limit State Design of Steel Structure

- E) Plastic Analysis and Design
- F) Water Power Engineering

Elective V

A) Advanced Structural Mechanics.

B) Air Pollution Control

C) Bridge Engineering

D) Introduction to Earthquake Engineering

E) Town & Urban Planning

F) Tunneling & Underground Excavation

Roll No.	Name of Student	Subjec	t Choice	Sign			
4CV101	/Mali PritiPrakash	R.	B.	· Party			
4CV102	/Sutar Maithili Sanjay	R	8	muler			
4CV103	NaikSujit Suresh	B.	6	1154			
4CV104	/ChouguleSakshiSantosh	C	6	E con			
4CV105	BidreOnkar Ashok	0	6	s. S. Chan			
4CV106	Patel MahammadarbajImteyaj	0	A	in old			
4CV107	BhosaleSwapnilSuryakant		C	Incertes Data			
4CV108	/TapaseAishwarya Ashok	A I	Ω	5 april			

CIVIL ENGG. DF

NSHOK

War and Child
NE GROUP OF
A A A A A
SACT X AN
A A A A
1110
ITAT SATAT
XDRAXX
A KUYA
Tal. Analyzanta

FORMAT	and the second se
Doc. No.: AMGOI-ACAD-FRM-10	Rev. No.: 00
Page: 2 of 4	Rev. Dt.: 05/01/2014
Department of Civil	Engineering

4CV109	YatamSwapnilRajendra	B	B	Quelle
4CV110	KambleAtulVishwas	B.	A	ery
4CV111	PowarMilindPrakash	·B	B.	mice
4CV112	Bhosale Vishal Udayrao	ß	C	Herendy
4CV113	Bhosale Harshvardhan Sharad	B	B	11. A.Ped
4CV114	Pol Vinayak Ashok	6.	B	Vinnutte
4CV115	Patil MadanPrakash		B	Metil.
4CV116	Jadhav JaydeepMadhukar	ß	ß	BAC
4CV117	/KambleSayaliKundanlal	B	C)	Suy
4CV118	KambleTejasGoutam	B.	n	Muy
4CV119	AlatekarShreehariPravin	n.	ß	coom
4CV120	KamblePrajwalRandesh	B.	B	Pasificu
4CV121	KambleShubham Sunil	B	Ð	cherrens
4CV122	KambleHaridas Narayan	A	ß	HMEM
4CV123	KambleSwapnilVasant	D:	B	Gunny
4CV124	'/SakatePornimaJaywant	.0	R	Rispancik
4CV125	/WaghmarePratiksha Ramesh	ß	R	Rowson
4CV126	/BidkarPoojaPandit	R	n R	Dister
4CV127	Patel Arbaj Mansur		'R	Amen
4CV128	Khopkar Harshavardhan Pravin	ß	B	HEldown
4CV129	SutarAkashKrishnat	B	2	Aut
4CV130	MalageShubhamAnilkumar	R	- P	ama
4CV131	SokashiSumitSubhash	A	R	d work

CIVIL ENGG. DEPT.

* ASHON

FORMAT					
Doc. No.: AMGOI-ACAD-FRM-10	Rev. No.: 00				
Page: 3 of 4	Rev. Dt.: 05/01/2014				
Department of Civi	Engineering				

4CV132 Patil VishwajeetYashwant WRaht B D 4CV133 Patil OmkarNamdev Doul B. C 4CV134 Shinde RohanRajendra ß Risbinde F 4CV135 Suryawanshi Karan krushnath Dutte B B 4CV136 Patil PavanVinod BRENT B C 4CV137 Patil Om Sudhakar R John H ß 4CV138 VaskarOnkarUmesh ß · Oralupic D 4CV139 Patil PratapsinhRaghunath PB BUL B B 4CV140 ChavareRushikeshMadhukar RIND B Ċ 4CV141 ShingadeDipak Sanjay B Destinday 1 4CV142 Koli Rushikesh Kumar E Dernes D 4CV143 Patil ChetanLaxman 3 URA. B 4CV144 Desai SwaroopGajanan F E Suy 4CV145 Patil Raviraj Suresh ß RERUN D 4CV146 /PawarKomal Deepak B 1 panel R 4CV147 Patil Sanchit Sanjay Suppl ß F 4CV148 Patil Utkarsh Suresh YRIG R B Total Elective IV B) Engineering Economic 32 Flective (B) Air pollution control 36

Prepared By :

Civil Engineering AMGOI, Faculty of Engineering

the state of the		Semester- VI		÷		den son den State				
Course	Course	Course Title	Te Se	Teaching Scheme Evaluation Scher		Evaluation Scheme			edit	
Category	Code	an a	L	T	P	CA	MSE	ESE	Total	ð
PCC 14	BTCVC601	Design of RC Structures	3	1	1	20	20	60	100	4
PCC 15	BTCVC602	Foundation Engineering	3	1	-	20	20	60	100	4
PCC 16	BTCVC603	Transportation Engineering	3	-	-	20	20	60	100	3
PEC 2	BTCVPE604	 A. Industrial Waste Treatment B. Managerial Techniques C. Open Channel Flow D. Water Power Engineering E. Ground Improvement Techniques F. Structural Audit * 	3	-		20	20	60	100	3
		 G. Intelligent Transportation Systems H. Plastic Analysis of Structures I. Numerical Methods in Civil Engg. • J. Engineering Management 					\$			
OEC 1	BTCVOE605	 A. Environmental Impact Assessment B. Basic Human Rights C. Business Communication and Presentation Skills D. Composite Materials E. Experimental Stress Analysis F. Python Programming G. Operation Research H. Applications of Remote Sensing and Geographic Information Systems I. Civionics: Instrumentation & Sensor Technologies for Civil Engineering J. Planning for Sustainable Development K. Development K. Development 	3	-		20	20	60	100	3
HSSMC4	BTHM606	Indian Constitution	2		1	50		-	50	A 1"
LC 10	BTCVI 607	SDD of RC Structures Lab	-	1-	2	20	-	30	50	Audit
LC 11 •	BTCVL608	Transportation Engineering Lab	-	-	2	20		30	50	1
Project	BTCVM609	Mini Project		1	2	20	-	20	50	1
Internship		Mandatory (BTCVP610) Field Training/ Internship/Industrial Training (minimum of 4 weeks training in Summer Vacation after Semester VI and appear at examination in Semester VII.)	-	-	-	-	-	-	-	I Credits to be evaluat ed in VII Sem
		Total	17	2	6	210	100	390	700	20

わいい

FORMAT	
Doc. No.: AMGOI-ACAD-FRM-10	Rev. No.: 00
Page: 1 of 4	Rev. Dt.: 05/01/2014

Subject Choice Form

Department : Civil Engineering	Academic Year : 2022-23	
Class :T.Y.	Semester : Even	

All students of Civil Engineering department are informed to select your elective subject form list of following subjects.

Elective-III

A. Industrial Waste Treatment

B. Managerial Techniques

C. Open Channel Flow

D. Water Power Engineering

E. Ground Improvement Techniques

F. Structural Audit

G. Intelligent Transportation Systems

H. Plastic Analysis of Structures

I. Numerical Methods in Civil Engg.

J. Engineering Management

Elective-IV

- A. Environmental Impact Assessment
- **B. Basic Human Rights**
- C. Business Communication and Presentation Skill
- **D.** Composite Materials
- E. Experimental Stress Analysis
- F. Python Programming
- G. Operation Research

H. Applications of Remote Sensing and

- **Geographic Information Systems**
- I. Civionics: Instrumentation & Sensor
 - **Technologies for Civil Engineering**
- J. Planning for Sustainable Development
- K. Development Engineering

Roll No.	Roll No. Name of Student		Choice	Sign
3CV101	BAGANE RAJ DILIP	T	F	PEGUS
3CV102	KAMBLE NIKHIL PANDIT	F.	C.	Nanso
	OFBIOHSY CIVIL ENGG. DEPT.	*		

Page: 2 of 4

ASHOKRAO MANE GROUP OF INSTITUTIONS, VATHAR.

FORMAT
Doc. No.: AMGOI-ACAD-FRM-10
Rev. No.:

.

Rev. Dt.: 05/01/2014

Rev. No.: 00

Department of Civil Engineering

3CV103	MASKE SOURABH SANIAY			
201/104		7	F	58 maste
3CV104	PATIL ABHISHEK SATISH	-	F	NRHAD
3CV105	SURYAVANSHI SOHAM SAMPATRA	V F		10.4
3CV106	WADKAR SANKET SANJAY		<u> </u>	1888
3CV107	/BHISE AISHWARYA	1	17	Breel Kar
3CV108	/BHOI MRUDULA DILIP	1	C	ABURGE
3CV109	GAIKWAD MONIKA SHASHIKANT	7	С	M.D. BHOT
201412	7 CHINERAD MICHINA SHASHIKAN I	T	C	megan
3CV110	/KOLI KAJAL JAYKUMAR		T	XNEDI
3CV111	/KOLI PALLAVI DILIP	Ci		ON PT-
3CV112	/MONE ANURADHA SANJAY		C	p. p. p. 1
3CV113	AMBEKAR AKSHAY DHONDIRAM	FI	C	Abm
3CV114	BIJALI GAYBAN SALIM	I	I	A. Ambekar
3CV115	CHAVAN PRATIK RAIARANA	7	С	gorphijalt
30/116		R	С	RIEC
507110	GHASTE RUSHIKESH SUBHASH	۴ı	C	REGaste
3CV117	JADHAV SAIPRASAD ASHOK	7	Ć	Stacker
3CV118	KAMBLE PREM MILIND		<u>Т,</u>	9-
3CV119	BHANDARI RAHUL MANIK	PL I	R	Burgery
3CV120	DHONGADE JEEVAN PANDIT	Ľ	C	RBM
3CV121	GAVADE DADASO SHIVAII	1	C	(iau)
3CV122		I	K	Gluidnas
201422	MAIN SAUKABH BALU	K	С	autorita
3CV123	PATHAN JUNED ASLAM	T	A	A Alas
3CV124	PATIL BHUSHAN SUKUMAR	SROUPOR	H	DA .M
	O.	Vial -	L	Kraot)
	(중 (CIVILEN	IGG. DEPT.		

FORMAT					
Doc. No.: AMGOI-ACAD-FRM-10	Rev. No.: 00				
Page: 3 of 4	Rev. Dt.: 05/01/2014				
Department of Civi	Engineering				

Department of Civil Engineering

3CV125	/MAGADUM ANKITA DILIP	I	В	AP Proved W)
3CV126	/MULIK SONALI KUMAR	A	C	Spulik
3CV127	/PAWAR PRAGATI RAJENDRA	T	B	p. K 10 m
3CV128	/SAMUDRE PRITI BAJIRAO	2	K	
3CV129	/SUTAR SAKSHI SURYAKANT	7	С	587
3CV130	KHADE VISHAL NAVNATH	A '	С	Mkah
3CV131	KHOT SAIRAJ ASHOK	7	С	achot
3CV132	LOKHANDE SANDESH GANESH	G	н	Stark .
3CV133	MAGDUM KUNAL SHANKAR	C	D.	Sem.
3CV134	MANE AKASH DIPAK	I	B	A.J. More
3CV135	MUJAWAR MUHAMMADKADEER SARDAR	F	С	tour
3CV136	NADAF PINJARI AMIR SAHEBLAL	Α.	С	Anna
3CV137	NANDIWALE TUSHAR LAXMAN	7	С	annan
3CV138	PATIL JAYDIP JAYKAR	C C	F	Parte.
3CV139	PATIL OMKAR BABASAHEB	I	B	0. 8. 1.41
3CV140	PATOLE NISHANT DHAVILKANT	F	G	A Farth
3CV141	RABADE SUSHANT VILAS	7	B	ynkar
3CV142	SUTAR SHUBHAM ANANDRAO	T	C	Asutor
3CV143	UPASE SANKET ARUN	T	R	APan.
3CV144	PATIL GAURAV SHIVAJI		C	wet
3CV145 .	PATIL GAURAV VISHWAS	4	С	asput 1
3CV146	PATIL OMKAR SANJAY	Ţ	С	Burn
	CIVIL ENGG. DEPT.			

Page: 4 of 4

ASHOKRAO MANE GROUP OF INSTITUTIONS, VATHAR.

FORMAT Doc. No.: AMGOI-ACAD-FRM-10

Rev. No.: 00 Rev. Dt.: 05/01/2014

Department of Civil Engineering

	A	0 1
7	B	Conti
1.	D D	Real
	B	Daug
2	R	KASM
_	<i>p</i> .	
-+	р. р.	Rinehu.
	В	And the
\rightarrow	F.	Aparm
ane a	F	purf7.
101	C	Psulotte
\rightarrow	C	Kgh.
	0	FMBU
	C	Albur
	A.	Demp
	В	Ato
	G	
	C	Ruf
	(SBOLL
	D	PRZhi).
	₿.	Spi
	A.	Spint.
	C	SVKaral
		H. C

FORMAT Doc. No.: AMGOI-ACAD-FRM-10 Rev. No.: 00 Page: 5 of 4 Rev. Dt.: 05/01/2014 **Department of Civil Engineering**

3CV369	KHADAKE KARANSINH KRISHNA	C		D. H
3CV370	/KAMBLE JYOTI SUBHASH	H	S.F	+ Kgent
3CV371	MENIKARI VIJAY ADIVEPPA	A		D Maeni:
2 1	1	Total		
Nun	nenical methods in civi	LEngineomy28		
Bussiness a	communication & present	ation 33		
		Still.		

わい

HOD Ctvil Engineering AMGOI, Faculty of Engineering Vathar Tarf Vadgaen, Tal. batkanangale David thank!

Prepared By

Dr. Babasaheb Ambedkar Technological Enturesity, Lonere.

B.Tech (Electrical Engineering / Electrical Engineering (Electronics and Power)/ Electrical & Electronics Engg / Electrical & Power Engineering)

Course Category	Course Code	Course Title	Teaching Scheme		Teaching Evaluation Scheme Scheme					me	Credit
			L	Т	P	(DA)	MSE	ESE	Total		
BSC	BTBS301	Engineering Mathematics-III	3	1	-	D	20	60	100	4	
PCC1	BTEEC302	Electrical Machines-I	3	1	-	D	20	60	100	4	
PCC2	BTEEC303	Electrical and Electronics	3	1	-	D	20	60	100	4	
		Measurement									
HSSMC	BTHM304	Basic Human Rights	2	-	-	-				Audit	
ESC	BTES305	Engineering Material Science	3	-	-	D.	20	60	100	3	
LC	BTEEL306	Electrical Machines-I Lab			2	10.		40	100	1	
LC	BTEEL307	Electrical and Electronics			2	nD.		40	100	1	
		Measurement Lab									
Project	BTEEP308	Mini Project-I			4	h0.		40	100	2	
Internship	BTES211P	Internship-I Evaluation						50	50	1	
			14	3	5		80	410	750	20	

Curriculum of Second Year Semester III

Semester IV

Course Category	Course Code	Course Title	Te	eachi chen	ing ne	Ð	valuatio	on Sche	me	Credit
Carl Sec.			L	T	P	(IA)	MSE	ESE	Total	
PCC3	BTEEC401	Network Theory	3	1	-	D	20	60	100	4
PCC4	BTEEC402	Power System	3	1	-	20	20	60	100	4
PCC5	BTEEC403	Electrical Machine-II	3	1	-	D	20	60	100	4
BSC	BTBS404	Analog and Digital Electronics	3	-	-	20	20	60	100	3
PEC1	BTEEPE405	Group A	3	-	-	20	20	60	100	3
LC	BTEEL406	Network Theory Lab	-	-	2	3100		20	50	1
LC	BTEEL407	Power System Lab	-	-	2	310		20	50	1
LC	BTEEL408	Electrical Machine-II Lab	-	-	2	3300		20	50	1
LC	BTEEL409	Analog and Digital Electronics lab	-	-	2	3390		20	50	1
Internship	BTEEP410	Internship-II (minimum of 4 weeks which can be completed partially in third or fourth semester or in at one time)	-	-	-	-		-	-	-
						22200	100	380	700	22

1

Group-A

- (A)Electromagnetic Field Theory
- (B) Signals and System
- (C) Advance Renewable Energy Sources
- (D) Electronic Devices and Circuits

Dr. Babasaheb Ambedkar Technological University, Lonere. B.Tech (Electrical Engineering of the State of the S

(Electrical Engineering /	Flooteinst	F	Whatronice and Po	JWCI
Electronic	Electrical	Fullineeame	(Sectionering)	

Cours	se	Curriculum for	r Sem	eserr	<i>A</i>	-				Credi
Categ	o Course Code	e Course Title	1	lenti	ing.	E	aiuatio	on Sche	те	t
			-	NCIPI	III.	CA	MS	ESE	Tota 1	
PCC4	DTEECE		L	1	17		20	60	100	4
Dan	BIEEC501	Power System Analysis	3	1		20	20	(0)	100	3
PCC5	BTEEC502	Microprocessor and	1	-		20	20	60	100	1
PCC6	BTEEC502	Microcontroller				20	20	60	100	4
PCC2	BTEEDIESOA	Power Electronics	3	1	-	20	20	60	100	3
OEC1	BTEEDES05	Group B	3			20	20	60	100	3
HSSM	DILLOESUS	Group C	3	~		20	20		-	Audit
С	BTHM506	Foreign Language "	-	-			-	-		
LC	BTEEL507	Power System Analysis Lab	-	-	T	60	-	40	100	1
LC	BTEEL508	Microprocessor and	-	-	T	60	-	40	100	1
LC	BTEEL 500	Microcontroller Lab			T	60	_	40	100	1
Project	BTEEPE510	Power Electronics Lab	-		4	60		40	100	1
Internsh	BTEEP410	Internship-II Evaluation	-	-	-		-	50	50	1
тр				-		2010	100	510	050	22
		lota	12	4	100	140	100	510	950	22
PCC7	BTEEC601	Semeste	r VI	-	-	20	20	(0)	100	2
PCC8	BTEEC602	Switchgear and Protection	2			20	20	60	100	3
1000	DIEEC002	Electrical Machine Design	2	11		20	20	60	100	4
PCC9	BTEEC603	Control System	3	1	-	20	20	60	100	4
DEC3	DTEEDECOA	Engineering	-	-	-			00	100	-
DEC2	DIEEPE004	Group D	2	-		20	20	60	100	3
JEC2	BIEEUE005	Group E	3	-		20	20	60	100	3
LC	BTEEL606	Lab	-	-	22	60		40	100	1
C	BTEEL607	Electrical Machine Design Lab	-	-	22	60		40	100	1
C	BTEEL608	Control System Engineering Lab	-	-	22	60		40	100	
eminar	BTEEM609	Seminar			44	60		40	100	1
		Internship-III		-	440	60		40	100	2
		(minimum of 4 weeks								Credit
ternsh		which can be completed								s to he
	BIEEP610	partially in third or fourth	-	-	-	-				evol-
	5 S. 1	semester or in at one time)					-	-	-	evalua
	the state	and a star star starting)				7-1-1	-			ted in
	10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tatal	-	-		-			1	VII
-		1002	15	2	100	340	100	100		sem.
C= Basic	c Science Course	ESC= Engineering Science	-		-		100	460	000	

BSC= Basic Science Course, ESC= Engineering Science Course, PEC= Professional Core Course, PEC= Professional Elective Course, OEC= Open Elective Course, LC= Laboratory Course, HSSMC= Humanities and Social Science including Management Course # Online NPTEL Course

BTEEPE504 Profession Annual Seme	ester V
(A)HVDC (Group B)	BTEEOE505 Open Electer
(B) Power Quality Law	(A) Embedded System
(C) Industrial Automatic	(B) Electrical Salesy Monitoring of Electric Appe
rationation	(C) Condition Monte
BTHM506 Foreign L	
(A) Japanese Language	
(D) c Language	

(B)German Language

BTEEPE604 D Semester	r VI
A Professional Elective (Group D)	BTEEOE605 Open Excement
(A) Flexible AC Transmission System	(A) E-waste Management
(B) Smart Grid Technology	(B) Power Plant Engineering
(C) Modeling Simulation and Court 1 (D)	(C) Sensor Technology
Drives	(C) Sensor real
DIIVOS	Interaction with Power System
	(D) Lightning Interaction with

Dr. Babasaheb Ambedkar Technological University, Lonere. B.Tech (Electrical Engineering / Electrical Engineering (Electronics and Power)/ Electrical & Electronics Engg / Electrical & Power Engineering)

Sr. No.	Course Code	Type of	Course Title	Ho	urs j veck	per	Ev	aluati	on e	Total Marks	Credits
2.2		Course		L	T	P	MSE	CA	ESE		
1	BTEEC701	PCCI	Power System Operation & Control	3	0	0	20	20	60	100	3
2	BTEEC702	PCC2	High Voltage Engineering	3	0	0	20	20	60	100	3
3	BTEEC703	PCC3	Electrical Drives	3	0	0	20	20	60	100	3
4	BTEEE704	PEC1	Elective-IX	3	0	0	20	20	60	100	3
5	BTEEE705	PEC2	Elective-X	3	0	0	20	20	60	100	3
6	BTEEL706	Lab	Power System Operation & Control Lab	0	0	2		30	20	50	1
7	BTEEL707	Lab	High Voltage Engineering Lab	0	0	2		30	20	50	1
8	BTEEL708	Lab	Electrical Drives Lab	0	0	2		30	20	50	1.
9	BTEES709	Seminar	Seminar	0	0	2		30	20	50	1
10	BTEEP710	Project	Project Part-I	0	0	6		30	20	50	3
11	BTEEF711	-	Field Training /Internship/Industrial Training III	-				-	50	50	1
			Total	15	0	14	100	250	450	800	23

Curriculum for Semester VII [Final Year]

Elective-IX	Elective-X
A) Special Purpose Electrical Machines	A) Digital Signal Processing
B) Electrical Traction and Utilization	B) Energy Audit and Conservation
C) Engineering System Design and Optimization	C) Electrical Power Quality
D) Financial Management	D) HVDC Transmission and FACTS

4

Dr. Blabasabeb Ambebkar Technological University, Lonere. B.Tech (Electrical Engineering / Electrical Engineering (Electronics and Power)/ Electrical & Electronics Engg / Electrical & Power Engineering)

Sr. No.	Course Code	arse Course Title Hou		Hours per week Evaluation Scheme						Credits
	1.Power Mana	ament Internet	L	T	P	MNE	CA	ESE	Marks	
	Circuits 2.DC Power Tr 3.High Power 1 4.Fuzzy Sets, L Applications 5.The Joy of Co 6.Introduction of Industrial Internation	anamission Systems Multilevel Converters ogic and Systems & omputing using Python o Industry 4.0 and	3	0	0	20*	20*	60*	100	3
	7.Entrepreneurs # Student to op	hip Essentials any two subjects	3	0	0	20*	20*	60*	100	3
6	BTEEP803	Project - II	0	0	30	-	100	150	250	21
		Total	6	0	30	40	240	270	450	

Curriculum for Semester VIII [Final Year]

* Six months of Internship in the industry

*Students doing project at institute will have to appear for CA/MSE/ESE

* Student doing project at Industry will give NPTEL examination / Examination conducted by university i.e. CA/MSE/ESE

These subjects are to be studied on self-study mode using SWAYAM/NPTEL/Any other source

Teacher who work as a facilitator for the course should be allotted 3 hrs/week load.

Project Load: 2hrs/week/project.

Mapping of Courses with MOOCs Platform SWYAM / NPTEL

S.N.	Course Name	Duration	Name of Professor	Institute offering Course
1	Power Management Integrated	12 Weeks	Prof. Qadeer Ahmad Khan	IITM
2	DC Power Transmission Systems	12 Weeks	Prof. Krishna S	IITM
3	High Power Multilevel Converters	12 Weeks	Prof. Anandarup Das	IITD
4	Fuzzy Sets, Logic and Systems & Applications	12 Weeks	Prof. Nishchal Kumar Verma	IITK
5	The Joy of Computing using Python	12 Weeks	Prof. Sudarshan Iyengar Prof. Yayati Gupta	IIT Ropar
6	Introduction to Industry 4.0 and Industrial Internet of Things	12 Weeks	Prof. Sudip Misra	IIT KGP
7	Entreprencurship Essentials	12 Weeks	Prof. Manoj Kumar Mondal	IIT KGP

Course Structure for Semester III B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

	Semester III										
Course	Course Code	Course Title	Teac	hing Sch	Evaluation Scheme				No. of		
Category			L	Т	Р	CA	MSE	ESE	Total	Credits	
BSC7	BTBS301	Engineering Mathematics – III	3	1	-	20	20	60	100	4	
PCC1	BTMC302	Fluid Mechanics	3	1	-	20	20	60	100	4	
PCC2	BTMC303	Thermodynamics	3	1	-	20	20	60	100	4	
ESC10	BTMES304	Materials Science and Metallurgy	3	1	-	20	20	60	100	4	
PCC3	BTMCL305	Machine Drawing and CAD Lab	-	-	4	60	-	40	100	2	
PCC4	BTMCL306	Mechanical Engineering Lab – I	-	-	4	60	-	40	100	2	
PROJ-2	BTES209P	IT – 1 Evaluation	-	-	-	-	-	100	100	1	
		Total	12	4	<mark>8</mark>	<mark>200</mark>	80	<mark>420</mark>	<mark>700</mark>	<mark>21</mark>	

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course

PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course

HSSMC = Humanities and Social Science including Management Courses

Course Structure for Semester IV

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Semes	ter IV							
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				N C
Category			L	T	Р	CA	MSE	ESE	Tota l	No. of Credits
PCC 5	BTMC401	Manufacturing Processes – I	3	1	-	20	20	60	100	4
PCC 6	BTMC402	Theory of Machines-I	3	1	-	20	20	60	100	4
HSSMC3	BTHM403	Basic Human Rights	3	-	-	20	20	60	100	3
ESC11	BTMES404	Strength of Materials	3	1	-	20	20	60	100	4
PEC 1	BTMPE405A- <mark>C</mark>	Elective-I	3	-	-	20	20	60	100	3
PCC7	BTMCL406	Mechanical Engineering Lab-II	-	-	4	60	-	40	100	2
PROJ- <mark>3</mark>	BTMI40 <mark>7</mark>	Field Training /Industrial Training (minimum of 4 weeks which can be completed partially in the third and fourth semester or in one semester itself)	-	-	-	-	-	-	-	Credits to be evaluated in Sem V
		Total	15	4	<mark>4</mark>	<mark>160</mark>	100	<mark>340</mark>	<mark>600</mark>	<mark>20</mark>

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

HSSMC = Humanities and Social Science including Management Courses

Sr. No	Course code	Course Name
<mark>1</mark>	BTMPE405 <mark>A</mark>	Numerical Methods in Engineering
<mark>2</mark>	BTMPE405 <mark>B</mark>	Sheet Metal Engineering
<mark>3</mark>	BTMPE405 <mark>C</mark>	Fluid Machinery

Course Structure for Semester V

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Seme	ster V							
Course	Course Code Course Title			Teaching Scheme			Evaluation Scheme			
Category			L	Т	Р	CA	MSE	ESE	Total	Credits
PCC 8	BTMC 501	Heat Transfer	3	1	-	20	20	60	100	4
PCC 9	BTMC 502	Machine Design – I	3	1	-	20	20	60	100	4
PCC 10	BTMC 503	Theory of Machines- II	3	1	-	20	20	60	100	4
PEC 2	BTMPE 504A-C BTAPE50 <mark>4</mark> A,D	Elective-II	3	-	-	20	20	60	100	3
OEC 1	BTMOE 505A-D	Open Elective-I	3	-	-	20	20	60	100	3
PCC 11	BTMC 506	Applied Thermodynamics	<mark>3</mark>		-	<mark>20</mark>	<mark>20</mark>	<mark>60</mark>	<mark>100</mark>	<mark>3</mark>
PCC12	BTMCL 50 <mark>7</mark>	Mechanical Engineering Lab – III	-	-	6	60	-	40	100	3
PROJ- <mark>3</mark>	BTMI 40 <mark>8</mark>	IT – 2 Evaluation	-	-	-	-	-	100	100	1
		Total	<mark>18</mark>	3	<mark>6</mark>	<mark>180</mark>	<mark>120</mark>	<mark>500</mark>	800	<mark>2</mark> 5

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective II

Sr. No	Course code	Course Name
1	BTMPE504A	Refrigeration and Air conditioning
2	BTMPE504B	Steam and Gas Turbines
3	BTMPE504C	Engineering Tribology
4	BTAPE50 <mark>4</mark> A	Fundamentals of Automobile Design
5	BTAPE504D	Automobile Engineering

Open Elective I

Sr.No.	Course code	Course Name
1	BTMOE505A	Solar Energy
2	BTMOE505B	Renewable Energy Sources
3	BTMOE505C	Human Resource Management
Δ	BTMOE505D	Product Design Engineering

Fluid Machinery

BTMPE405C	PEC 1	Fluid Machinery	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand and apply momentum equation
CO2	Understand and explain Hydrodynamic Machines
CO3	Explain difference between impulse and reaction turbines
CO4	Find efficiencies, draw velocity triangles
CO5	Explain governing mechanisms for hydraulic turbines
CO6	Explain working of various types of pumps, draw velocity diagrams, do simple Calculations
CO7	Design simple pumping systems

Mapping of course outcomes with program outcomes

Course						Prog	am Ou	itcome	s			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1									1
CO2	3		3				2					1

Dr. Babasaheb Ambedkar Technological University, Lonere

CO3	3	2							1
CO4	3	3	2						1
CO5			3						1
CO6	3	3	3	1	1				1
CO7	3	3		3					1

Course Contents:

Unit 1: Momentum Equation and its Applications

Impulse momentum, Principle, Fixed and moving flat inclined plates, Curved vanes, Series of plates and vanes, Velocity triangle and their analysis, Water wheels. Hydrodynamic Machines: Classification, General theory, Centrifugal head, Fundamental equations, and Euler's equation, Degree of reaction, Head on machine, various efficiencies, Condition for maximum hydraulic efficiency.

Unit 2: Impulse and Reaction Turbines

Impulse principle, Construction of Pelton wheel, Velocity diagrams and its analysis, Number of buckets, Jets, Speed ratio, Jet ratio.

Reaction Turbines: Constructional details of Francis, Kaplan and Propeller turbine, Deciaz turbine, and Draft tube types, Efficiencies, Cavitation.

Unit 3: Governing of Turbines

Methods of governing, Performance characteristics, Safety devices, Selection of turbines, Unit quantities, Specific speed, Principles of similarity and model testing.

Unit 4: Centrifugal Pump

Construction, Classification, Terminology related to pumps, Velocity triangle and their analysis, Cavitation, NPSH, Thoma's cavitation factor, Priming, Methods of priming, Specific speed, Performance characteristics, Actual thrust and its compensation, Troubleshooting.

Multistage Pumps: Pump H-Q characteristics and system H-Q Characteristics, Series and parallel operation of pumps, Systems in series and parallel, Principle of model testing and similarity.

Unit 5: Special Purpose Pumps

Chemical pumps, nuclear pumps, Sewage pumps, Submersible deep well pumps, Pump installation, Energy efficient pumps.

Failure of Pumping System: Pump failures, Remedies, Source failure, Causes and remedies, Trouble shooting.

Miscellaneous Pumps: Reciprocating pump, Gear pump, Vane pump, Lobe pump, etc., Application field (no mathematical treatment).

Texts:

- 1. P. N. Modi, S. M. Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House, Rajsons Publications Pvt. Ltd., 20th edition.
- 2. R. K. Bansal, "A Text Book of Fluid Mechanics and Hydraulic Machines", Lakshmi Publications Pvt. Ltd., 9th edition.

References:

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

HSSMC = Humanities and Social Science including Management Courses

Sr. No	Course code	Course Name
<mark>1</mark>	BTMPE405 <mark>A</mark>	Numerical Methods in Engineering
<mark>2</mark>	BTMPE405 <mark>B</mark>	Sheet Metal Engineering
<mark>3</mark>	BTMPE405 <mark>C</mark>	Fluid Machinery

Course Structure for Semester V

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

	Semester V												
Course	Course Code	Course Title	Teac	hing Sc	E	No. of							
Category		L	Т	Р	CA	MSE	ESE	Total	Credits				
PCC 8	BTMC 501	Heat Transfer	3	1	-	20	20	60	100	4			
PCC 9	BTMC 502	Machine Design – I	3	1	-	20	20	60	100	4			
PCC 10	BTMC 503	Theory of Machines- II	3	1	-	20	20	60	100	4			
PEC 2	BTMPE 504A-C BTAPE50 <mark>4</mark> A,D	Elective-II	3	-	-	20	20	60	100	3			
OEC 1	BTMOE 505A-D	Open Elective-I	3	-	-	20	20	60	100	3			
PCC 11	BTMC 506	Applied Thermodynamics	<mark>3</mark>		-	<mark>20</mark>	<mark>20</mark>	<mark>60</mark>	<mark>100</mark>	<mark>3</mark>			
PCC12	BTMCL 50 <mark>7</mark>	Mechanical Engineering Lab – III	-	-	6	60	-	40	100	3			
PROJ- <mark>3</mark>	BTMI 40 <mark>8</mark>	IT – 2 Evaluation	-	-	-	-	-	100	100	1			
		Total	<mark>18</mark>	3	<mark>6</mark>	<mark>180</mark>	<mark>120</mark>	<mark>500</mark>	800	<mark>2</mark> 5			

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective II

Sr. No	Course code	Course Name
1	BTMPE504A	Refrigeration and Air conditioning
2	BTMPE504B	Steam and Gas Turbines
3	BTMPE504C	Engineering Tribology
4	BTAPE50 <mark>4</mark> A	Fundamentals of Automobile Design
5	BTAPE504D	Automobile Engineering

Open Elective I

Sr.No.	Course code	Course Name
1	BTMOE505A	Solar Energy
2	BTMOE505B	Renewable Energy Sources
3	BTMOE505C	Human Resource Management
Δ	BTMOE505D	Product Design Engineering

Dr. Babasaheb Ambedkar Technological University, Lonere

Automobile Engineering

BTAPE504D	PEC2	Automobile Engineering 3-)-0									
Teaching Scheme Examination Scheme												
Lecture: 3 Hrs/	week	Continuous Assessment: 2	Continuous Assessment: 20 Marks									
		Mid semester examination	: 20 Marks									
		End Semester Exam: 60 M	larks (3 hrs									
		duration)										

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to :

	C	01	Identify the different parts of the automobile.								
CC	02	Expl	ain the working of various parts like engine, transmission, clutch, brakes etc.,								
CC)3	Dem	ionstrate various types of drive systems; front and rear wheels, two and four wheel								
dri	ve										
CC)4	Apply vehicle troubleshooting and maintenance procedures.									
CC	15	Ana	lyze the environmental implications of automobile emissions. And suggest suitable								
CC	,5	regu	latory modifications.								

Mapping of course outcomes with program outcomes

CourseOu		Program Outcomes										
tcomesC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8]	PO9 [PO10PC)11PO	12
01	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							
CO5		2			1	1	2					
CO6	1		2			2						

Course Contents:

Unit1: Introduction

Vehicle specifications, Classifications, Chassis layout, Frame, Main components of automobile and articulated vehicles; Engine cylinder arrangements, Power requirements, Tractive efforts and vehicle performance curves.

Unit2: Steering and Suspension Systems

Steering system; Principle of steering, Centre point steering, Steering linkages, Steering geometry and wheel alignment, power steering.

Suspension system: its need and types, Independent suspension, coil and leaf springs, Suspension systems for multiaxle vehicles, troubleshooting and remedies.

Unit3: Transmission System

Clutch: its need and types, Gearboxes: Types of gear transmission, Shift mechanisms, Over running clutch, Fluid coupling and torque converters, Transmission universal joint, Propeller shaft, Front and rear axles types, Stub axles, Differential and its types, Four wheel drive.

Unit4: Brakes, Wheels and Tyres

Brake: its need and types: Mechanical, hydraulic and pneumatic brakes, Disc and drum type: their relative merits, Brake adjustments and defects, Power brakes

Wheels and Tyres: their types; Tyre construction and specification ; Tyre wear and causes; Wheel balancing.

Unit5: Electrical Systems

Construction, operation and maintenance of lead acid batteries, Battery charging system, Principle and operation of cutout and regulators, Starter motor, Bendix drive, Solenoid drive, Magneto-coil and solid stage ignition systems, Ignition timing.

Vehicle Testing and Maintenance

Need of vehicle testing, Vehicle test standards, Different vehicle tests, Maintenance: trouble shooting and service procedure, over hauling, Engine tune up, Tools and equipment for repair and overhauling, Pollution due to vehicle emissions, Emission control system and regulations.

Texts:

1. Kripal Singh, "Automobile Engineering", Vol.I and II, Standard Publishers.

2. G.B.S.Narang,"Automobile Engineering", Dhanpat Rai and Sons.

References:

- 1. Joseph Heitner, "Automotive Mechanics", East-West Press.
- 2. W.H.Crouse, "Automobile Mechanics", Tata McGraw Hill Publishing Co.

Renewable Energy Sources

BTMOE505B	OEC1	Renewa	able Energy Sources	3-0-0	Credits		
Teaching Schem	e:		Examination Scheme:				
Lecture: 3 hrs/we	ek		Continuous Assessment	: 20 Marks			
			Mid Semester Exam: 20 Marks				
			End Semester Exam: 60 Marks (Duration 03 hrs)				

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to: CO1 Explain the difference between renewable and non-renewable energy

CO2	Describe working of solar collectors
CO3	Explain various applications of solar energy
CO4	Describe working of other renewable energies such as wind, biomass, nuclear

Mapping of course outcomes with program outcomes

Course					P	rogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3	3	3	2	2		2
CO2	1	1	3	1	2	3	3	3	2	2		2
CO3	2	1	1				3	2		1		2
CO4	3	3			2	3	3	2				1

Course Contents:

Unit 1: Solar Energy

Energy resources, Estimation of energy reserves in India, Current status of energy conversion Spectral distribution, Solar geometry, Attenuation of solar radiation in Earth's atmosphere, Measurement of solar radiation, Properties of opaque and transparent surfaces.

Unit 2: Solar Collectors

Flat Plate Solar Collectors: Construction of collector, material, selection criteria for flat plate collectors, testing of collectors, Limitation of flat plate collectors, Introduction to ETC.

Concentrating type collectors: Types of concentrators, advantages, paraboloid, parabolic trough, Heliostat concentrator, Selection of various materials used in concentrating systems, tracking.

Unit 3: Solar Energy Applications

Air/Water heating, Space heating/cooling, solar drying, and solar still, Photo-voltaic conversion.

Unit 4: Wind Energy and Biomass

Introduction to wind energy, Types of wind mills, Wind power availability, and wind power development in India. Evaluation of sites for bio-conversion and Introduction to biomass resources, Location of plants, Biomass conversion process,

[07 Hours]

[07 Hours] flat plate

[07 Hours]

Dr. Babasaheb Ambedkar Technological University, Lonere

Unit 5: Other Renewable Energy Sources

[07 Hours]

Tidal, Geo-thermal, OTEC, hydro-electric, Nuclear energy

Texts:

1. Chetan singh Solanki, "Renewable Energy Technologies", Prentice Hallo India, 2008.

References:

- 1. S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw-HillPublications, NewDelhi, 1992.
- 2. G. D.Rai, "SolarEnergyUtilization", KhannaPublisher, Delhi, 1992.

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Course Structure for Semester VI B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Semes	ter VI							
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No. of
Category			L	Т	Р	CA	MSE	ESE	Total	Credits
PCC12	BTMC 601	Manufacturing Processes- II	3	1	-	20	20	60	100	4
PCC13	BTMC 602	Machine Design-II	3	1	-	20	20	60	100	4
PEC3	BTMPE 603A-C BTAPE 603C,E	Elective-III	3		-	20	20	60	100	3
PEC4	BTMPE 604A-D BTAPE 604B	Elective-IV	3		-	20	20	60	100	3
OEC2	BTMOE 605A-E	Open Elective-II	3	-	-	20	20	60	100	<mark>3</mark>
PCC14	BTMCL 606	Mechanical Engineering Lab – IV	-	-	6	60	-	40	100	3
PROJ-4	BTMS607	B Tech Seminar	-	-	2	<mark>60</mark>		<mark>40</mark>	<mark>100</mark>	1
PROJ- <mark>5</mark>	BTMP 608	Mini Project (TPCS)	-	-	2	60	-	40	100	<mark>1</mark>
PROJ- <mark>6</mark>	BTMI 60 <mark>9</mark> (IT-3)	Field Training / Industrial Training (minimum of 4 weeks which can be completed partially in fifth semester and sixth semester or in one semester itself).	-	-	-	-	-	_	-	Credits to be evaluated in Sem VII
	i	Total	15	2	10	<mark>280</mark>	100	<mark>420</mark>	<mark>800</mark>	<mark>2</mark> 2

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective III:

Sr.No	Course code	Course Name
1	BTMPE603A	IC Engines
2	BTMPE603B	Mechanical Vibrations
3	BTMPE603C	Machine Tool Design
4	BTMPE603D	Engineering Metrology and Quality Control
5	BTAPE603C	Advance Automobile Design
6	BTAPE603E	E – Vehicles

Semester III

Engineering Mathematics-III

	BTBS301	Engineering Mathematics-III	BSC 7	3L-1T-0P	4 Credits
--	---------	-----------------------------	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Network analysis.
- 2. Transforms such as Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- 3. Vector differentiation and integration required in Electro-magnetic and Wave theory.
- 4. Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:

On completion of the course, students will be able to:

- Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.
- Solve problems related to Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing.
- Perform vector differentiation and integration, analyze the vector fields and apply to Electromagnetic fields.
- Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.

IC Engines

BTMPE603A	PEC3	IC Engines	3-0-0	3Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Applied Thermodynamics – I

Course Outcomes: At the end of the course, students will be able to

CO1	Understand various types of I.C. Engines and Cycles of operation.
CO2	Analyze the effect of various operating variables on engine performance
CO3	Identify fuel metering and fuel supply systems for different types of engines
CO4	Understand normal and abnormal combustion phenomena in SI and CI engines
CO5	Evaluate performance Analysis of IC Engine and Justify the suitability of IC Engine for different application
CO6	Understand the conventional and non-conventional fuels for IC engines and effects of emission formation of IC engines, its effects and the legislation standards

Mapping of course outcomes with program outcomes

Course					Pı	rogram	o Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3						3					
CO2		2										
CO3	2											
CO4	2											
CO5					2		3					
CO6	2											

Course Contents:

Unit 1: Fundamentals of IC Engines

[07 Hours]

Applications, nomenclature, engine components, Engine classification, two and four stroke cycle

Dr. Babasaheb Ambedkar Technological University, Lonere

engines; fundamental difference between SI and CI engines; valve timing diagrams.

Power Cycles: Air standard Otto, Diesel and Dual cycles; Valve timing diagrams, Fuel-Air cycles and deviation of actual cycles from ideal cycles.

Unit 2: Combustion

Introduction, important qualities and ratings of SI Engines fuels; qualities and ratings of CI Engine fuels.

Combustion in S.I. Engines, flame speed, ignition delay, normal and abnormal combustion, effect of engine variables on flame propagation and ignition delay, Combustion in C.I. Engines, combustion of a fuel drop, stages of combustion, ignition delay, combustion knock; types of SI and CI Engine combustion chambers.

Unit 3: Various Engine Systems and Engine Testing and Performance [07 Hours] Starting systems, fuel supply systems, engine cooling system, ignition system, engine friction and lubrication systems, governing systems.

Engine Testing and Performance of SI and CI Engines

Parameters, Type of tests and characteristic curves.

Super charging in IC Engine: Effect of attitude on power output, types of supercharging.

Engine Emissions and control: Pollutants from SI and CI engines and their control, emission regulations such as Bharat and Euro.

Unit 4: Alternate fuels

Need for alternative fuels, applications, various alternate fuels etc

Gaseous Fuels, Alcohols, Biodiesels, vegetable oil extraction, Trans-esterification process, properties of alternative fuels and fuel blends.

Fuel Cell Technology: Operating principles, Types, construction, working, application, advantages and limitations.

Unit 5: Layout of Electric vehicle and Hybrid vehicles

Advantages and drawbacks of electric and hybrid vehicles, System components, Electronic control system – Different configurations of Hybrid vehicles, Power split device. High energy and power density batteries – Basics of Fuel cell vehicles

Texts References:

- 1. V. Ganeshan, "Internal Combustion Engines", Tata McGraw Hill Publications, New Delhi, 3rd edition.
- 2. J. B. Heywood, "Internal Combustion Engine Fundamentals", Tata McGraw Hill Publications, New York, International Edition, 1988.
- 3. "Alternative Fuels", Dr. S. S. Thipse, Jaico publications.
- 4. "IC Engines", Dr. S. S. Thipse, Jaico publications.
- 5. "Engine Emissions, pollutant formation", G. S. Springer and D.J. Patterson, Plenum Press.
- 6. ARAI vehicle emission test manual.
- 7. Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, "The Biodiesel Handbook", AOCS Press
- 8. Champaign, Illinois 2005.
- 9. Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers,
- 10. 1997, ISBN 0-76-80-0052-1.

Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogas etc.

[07 Hours]

[07 Hours]

[07 Hours]

Product Life Cycle Management

BTMPE604B PEC4 Product Life Cycle Management	3-0-0	3Credits
--	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks End Semester Exam: 60 Marks (Duration 03 hrs)

Objectives: Establishing industry partnerships that guide, support, and validate PLM research and education activities assisting with the integration of PLM into College curricula and facilitating the PLM career opportunities.

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Outline the concept of PLM.
CO2	Illustrate the PDM system and its importance.
CO3	Illustrate the product design process.
CO4	Build the procedure for new product development.
CO5	Classify and compare various technology forecasting methods.
CO6	Outline the stages involved in PLM for a given product.

Mapping of course outcomes with program outcomes

Course Outcomes					Pı	ogram	Outcon	nes				
course outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				1						1	
CO2	1				1		1				1	
CO3	1		1		1							
CO4	1		1		1						1	

CO5	1		1	1			
CO6	1		1		1		1

Course Contents:

Unit 1: Introduction and strategies to PLM

Need for PLM, opportunities and benefits of PLM, different views of PLM, components of PLM, phases of PLM, PLM feasibility study, PLM visioning, Industrial strategies, strategy elements, its identification, selection and implementation, change management for PLM.

Unit 2: Product Data Management (PDM)

Human resources in product lifecycle, Information, Standards, Vendors of PLM Systems and Components, PDM systems and importance, reason for implementing a PDM system, financial Justification of PDM, barriers to PDM implementation

Unit 3: Product Design

Engineering design, organization and decomposition in product design, product design process, methodical evolution in product design, concurrent engineering, design for 'X' and design central development model. Strategies for recovery at end of life, recycling, human factors in product design. Modeling and simulation in product design.

Unit 4: New Product Development

Structuring new product development, building decision support system, Estimating market opportunities for new product, new product financial control, implementing new product development, market entry decision, launching and tracking new product program, Concept of redesign of product

Unit 5: Technology Forecasting and PLM Software and Tools

Future mapping, invocating rates of technological change, methods of technology forecasting such as relevance trees, morphological methods and mission flow diagram, combining forecast of different technologies, uses in manufacture alternative.

PLM Software and Tools

Product data security. Product structure, workflow, Terminologies in workflow, The Link between Product Data and Product Workflow, PLM applications, PDM applications.

Texts/References:

- 1. Grieves, Michael, "Product Lifecycle Management", Tata McGraw-Hill, 2006, ISBN 007145230330.
- 2. Antti Saaksvuori, Anselmi Immonen, "Product Life Cycle Management", Springer, 1st edition, 2003.
- 3. Stark, John, "Product Lifecycle Management: Paradigm for 21stCentury Product Realization", Springer-Verlag, 2004.
- 4. Fabio Giudice, Guido La Rosa, "Product Design for the environment-A life cycle approach", Taylor & Francis, 2006.
- 5. Robert J. Thomas, "NPD: Managing and forecasting for strategic processes".

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Wind Energy

BTMOE605D	OEC2	Wind Energy	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand historical applications of wind energy
CO2	Understand and explain wind measurements and wind data
CO3	Determine Wind Turbine Power, Energy and Torque
CO4	Understand and explain Wind Turbine Connected to the Electrical Network AC and DC
CO5	Understand economics of wind energy

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							2	2	2	1		1

Dr. Babasaheb Ambedkar Technological University, Lonere

CO2		3	2	1	3	2	2	2	2		1
CO3	3	3	1	1	2	2	1				1
CO4	3	3		1							1
CO5	3	2	1								1

Course Contents:

Unit 1: Introduction and Wind Measurements

Historical uses of wind, History of wind electric generations

Wind Characteristics: Metrology of wind, World distribution of wind, Atmospheric stability, Wind speed variation with height, Wind speed statistics, Weibull statistics, Weibull parameters, Rayleigh and normal distribution

Wind Measurements

Biological indicators, Rotational anemometers, other anemometers, Wind direction

Unit 2: Wind Turbine Power, Energy and Torque

Power output from an ideal turbine, Aerodynamics, Power output from practical turbines, Transmission and generation efficiency, Energy production and capacity factor, Torque at constant speeds, Drive train oscillations, Turbine shaft power and torque at variable speeds.

Unit 3: Wind Turbine Connected to the Electrical Network

Methods of generating synchronous power, AC circuits, the synchronous generator, per unit calculations, the induction machine, motor starting, Capacity credit features of electrical network

Unit 4: Wind Turbines with Asynchronous Electric Generators

Asynchronous systems, DC shunt generator with battery load, Per unit calculation, Selfexcitation of the induction generators, Single phase operation the induction generator, Field modulated generators, Roesel generator.

Asynchronous Load: Piston water pumps, Centrifugal pumps, Paddle wheel heaters, Batteries, Hydrogen economy, and Electrolysis cells.

Unit 5: Economics of Wind Systems

Capital costs, Economic concepts, Revenues requirements, Value of wind generated electricity

Texts:

1. S. Ahmad, "Wind Energy: Theory and Practice", Prentice Hall of India Pvt. Ltd.

References:

- 1. Garg L. Johnson, "Wind Energy Systems" Prentice Hall Inc., New Jersey, 1985.
- 2. Desire Le Gouriers, "Wind Power Plants: Theory and Design" Pergamon Press, 1982.

[07 Hours]

[07 Hours]

07 Hours]

[07 Hours]

[07 Hours]

B. Tech. Mechanical Engineering Course Structure for Semester VII [Fourth Year] w.e.f. 2020-2021

Course Code	Type of	Course Title	Weekl S	ly Tea cheme	ching	Evaluation Scheme				Credits
Course Coue	Course	Course The	L	Т	Р	CA	MSE	ESE	Total	creats
BTMEC701	PCC 29	Mechatronics	2	1		20	20	60	100	3
BTMEC702	PCC 30	CAD/CAM	2	1		20	20	60	100	3
BTMEC703	PCC 31	Manufacturing Processes - III	2	1		20	20	60	100	3
BTMEC704A		Fluid Machinery								
BTMEC704B		Industrial Engineering and Management					20	60	100	
BTMEC704C		Finite Element Method				• •				
BTMEC704D	PEC 2	Surface Engineering	2			20				3
BTMEC704E		Refrigeration and Air Conditioning								
BTAMC704C		Automobile Design (Product Design, PLM, CAE, Catia)								
BTMEC705A		Engineering Economics	3							
BTMEC705B	OEC 5	Intellectual Property Rights								Audit (AU/ NP)
BTMEC705C		Wind Energy								
BTMEC705D		Knowledge Management								
BTMEL706	PCC 32	Manufacturing Processes Lab - II			2	30		20	50	1
BTMEL707	PCC 33	Mechatronics Lab			2	30		20	50	1
BTMEL708	PCC 34	CAD/CAM Lab			2	30		20	50	1
BTMES709	Project 4	Seminar			2	30		20	50	1
BTMEF710	Project 5	Field Training /Internship/Industrial Training III						50	50	1
BTMEP711	Project 6	Project Stage-I**			6	30		20	50	3
		Total	11	4	14	230	80	390	700	20

**In case of students opting for Internship in the eighth semester, the Project must be industry-based.

Refrigeration and Air Conditioning

BTMEC704E PEC	Refrigeration and Air Conditioning	2-1-0	3 Credits
---------------	------------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Unit 1: Introduction

History, Fundamentals of refrigeration, Unit, Applications, Methods of producing cooling, Refrigeration systems, Thermodynamics of refrigeration, Primary and secondary refrigeration, Heat Pump

Unit 2: Vapour Compression System

Thermodynamics analysis, theoretical and actual cycle, Use of P-h and T-s diagram for problem solving, COP, Effect of evaporator and condenser temperature on cycle performance, Effects of suction superheating

Liquid sub-cooling, liquid-vapour heat exchanger, estimation of compressor displacement, COP and power requirement, waste heat recover opportunities

Unit 3:

Compound Vapour Compression System: Multi-evaporator, multi-compressor systems, cascade system (no mathematical treatment)

Vapour Absorption System: Aqua-ammonia system, lithium bromide-water system, Electrolux refrigerator, comparison with vapour compression cycle (descriptive treatment only), P-T-\xi chart, thermodynamic analysis, and capacity control, solar refrigeration system

Unit 4:

Refrigerant for Vapour Compression System: Desirable Properties, Selection, Zeotrops and Azeotropes, Necessity for replacement of CFC refrigerants, natural refrigerants **Air Conditioning:** Psychrometry, properties of moist air, psychrometric charts. Thermal comfort: Heat transfer from human body by sensible and latent heat transfer, metabolic heat generation, steady state model for heat transfer, effect of clothing and definition of effective temperatures, comfort conditions, human comfort, comfort chart.

1 / /

Unit 5: Air Conditioning Process Calculation

Sensible and latent heat loads, SHF, GSHF, RSHF, outside conditions, indoor conditions, estimation of coil capacity required, bypass factor, evaporative cooling

Unit 6: Distribution of Air

Principle of air distribution, duct design methods, friction chart, duct materials, methods of noise control

All air system, all water system, unitary systems; window air-conditioner, split air-conditioners, refrigeration and air-conditioning controls.

Texts:

- **1.** Arora, C.P., Refrigeration and Air Conditioning, Tata McGraw Hills, New Delhi, Second Edition, 2000.
- 2. Stoeker, W.F. and Jones, J.P., Principles of Refrigeration and Air Conditioning,

McGraw Hill, New York, Second Edition, 1982.

References:

- 1. ASHRAE Handbook Fundamentals and Equipment, 1993.
- 2. ASHRAE Handbook Applications, 1961.
- 3. ISHRAE Handbook
- 4. NPTEL Lectures by Prof. RamGopal, IIT Kharagpur
- 5. Carriern Handbook
- **6.** Jord R.C., and Priester, G.B., Refrigeration and Air Conditioning, Prentice Hall of India Ltd., New Delhi, 1969.
- 7. Threlkeld, J.L., Thermal Environmental Engineering, Prentice Hall, New York, 1970.

Wind Energy

Divide 705C ODE 5 Vind Energy 500 Addit	BTMEC705C	OEC 5	Wind Energy	3-0-0	Audit
---	-----------	-------	-------------	-------	-------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Audit Course

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand historical applications of wind energy
CO2	Understand and explain wind measurements and wind data
CO3	Determine Wind Turbine Power, Energy and Torque
CO4	Understand and explain Wind Turbine Connected to the Electrical Network AC and DC
CO5	Understand economics of wind energy

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							2	2	2	1		1
CO2		3	2	1	3	2	2	2	2			1
CO3	3	3	1	1	2	2	1					1
CO4	3	3		1								1
CO5	3	2	1									1

Course Contents:

Unit 1: Introduction

Historical uses of wind, History of wind electric generations

Wind Characteristics: Metrology of wind, World distribution of wind, Atmospheric stability, Wind speed variation with height, Wind speed statistics, Weibull statistics, Weibull parameters, Rayleigh and normal distribution

Unit 2: Wind Measurements

Biological indicators, Rotational anemometers, other anemometers, Wind direction

Unit 3: Wind Turbine Power, Energy and Torque

Power output from an ideal turbine, Aerodynamics, Power output from practical turbines, Transmission and generation efficiency, Energy production and capacity factor, Torque at constant speeds, Drive train oscillations, Turbine shaft power and torque at variable speeds.

Unit 4: Wind Turbine Connected to the Electrical Network

Methods of generating synchronous power, AC circuits, The synchronous generator, Per unit calculations, The induction machine, Motor starting, Capacity credit features of electrical network

Unit 5: Wind Turbines with Asynchronous Electric Generators

Asynchronous systems, DC shunt generator with battery load, Per unit calculation, Self excitation of the induction generators, Single phase operation the induction generator, Field modulated generators, Roesel generator.

Asynchronous Load: Piston water pumps, Centrifugal pumps, Paddle wheel heaters, Batteries, Hydrogen economy, and Electrolysis cells.

Unit 6: Economics of Wind Systems

Capital costs, Economic concepts, Revenues requirements, Value of wind generated electricity

Texts:

1. S. Ahmad, "Wind Energy: Theory and Practice", Prentice Hall of India Pvt. Ltd.

References:

- 1. Garg L. Johnson, "Wind Energy Systems" Prentice Hall Inc., New Jersey, 1985.
- 2. Desire Le Gouriers, "Wind Power Plants: Theory and Design" Pergamon Press, 1982.